Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Braz. j. biol ; 82: e244496, 2022. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1278474

ABSTRACT

Enzymes immobilized onto substrates with excellent selectivity and activity show a high stability and can withstand extreme experimental conditions, and their performance has been shown to be retained after repeated uses. Applications of immobilized enzymes in various fields benefit from their unique characteristics. Common methods, including adsorption, encapsulation, covalent attachment and crosslinking, and other emerging approaches (e.g., MOFs) of enzyme immobilization have been developed mostly in recent years. In accordance with these immobilization methods, the present review elaborates the application of magnetic separable nanoparticles and functionalized SBA-15 and MCM-41 mesoporous materials used in the immobilization of enzymes.


Enzimas imobilizadas em substratos com excelente seletividade e atividade apresentam alta estabilidade e podem suportar condições experimentais extremas, e seu desempenho foi mantido após repetidos usos. As aplicações de enzimas imobilizadas em vários campos se beneficiam de suas características únicas. Métodos comuns, incluindo adsorção, encapsulamento, ligação covalente e reticulação, e outras abordagens emergentes (por exemplo, MOFs) de imobilização de enzima, foram desenvolvidos principalmente nos últimos anos. De acordo com esses métodos de imobilização, a presente revisão elabora a aplicação de nanopartículas magnéticas separáveis e materiais mesoporosos funcionalizados SBA-15 e MCM-41 usados na imobilização de enzimas.


Subject(s)
Enzymes, Immobilized/metabolism , Magnetite Nanoparticles , Enzyme Stability , Adsorption , Hydrogen-Ion Concentration
2.
Chinese Journal of Biotechnology ; (12): 1602-1611, 2022.
Article in Chinese | WPRIM | ID: wpr-927804

ABSTRACT

Enzyme separation, purification, immobilization, and catalytic performance improvement have been the research hotspots and frontiers as well as the challenges in the field of biocatalysis. Thus, the development of novel methods for enzyme purification, immobilization, and improvement of their catalytic performance and storage are of great significance. Herein, ferritin was fused with the lichenase gene to achieve the purpose. The results showed that the fused gene was highly expressed in the cells of host strains, and that the resulted fusion proteins could self-aggregate into carrier-free active immobilized enzymes in vivo. Through low-speed centrifugation, the purity of the enzymes was up to > 90%, and the activity recovery was 61.1%. The activity of the enzymes after storage for 608 h was higher than the initial activity. After being used for 10 cycles, it still maintained 50.0% of the original activity. The insoluble active lichenase aggregates could spontaneously dissolve back into the buffer and formed the soluble polymeric lichenases with the diameter of about 12 nm. The specific activity of them was 12.09 times that of the free lichenase, while the catalytic efficiency was 7.11 times and the half-life at 50 ℃ was improved 11.09 folds. The results prove that the ferritin can be a versatile tag to trigger target enzyme self-aggregation and oligomerization in vivo, which can simplify the preparation of the target enzymes, improve their catalysis performance, and facilitate their storage.


Subject(s)
Biocatalysis , Enzymes, Immobilized/metabolism , Ferritins/metabolism , Glycoside Hydrolases/metabolism
3.
Chinese Journal of Biotechnology ; (12): 2936-2946, 2021.
Article in Chinese | WPRIM | ID: wpr-887855

ABSTRACT

A stable Zr-based metal-organic framework (MOF, UiO-66-NH2) synthesized via micro-water solvothermal method was used to immobilize amidase by using the glutaraldehyde crosslinking method. The effect of immoblization conditions on enzyme immoblization efficiency was studied. An activity recovery rate of 86.4% and an enzyme loading of 115.3 mg/g were achieved under the optimal conditions: glutaraldehyde concentration of 1.0%, cross-linking time of 180 min, and the weight ratio of MOF to enzyme of 8:1. The optimal temperature and optimal pH of the immobilized amidase were determined to be 40 °C and 9.0, respectively, and the Km, Vmax and kcat of the immoblized amidase were 58.32 mmol/L, 16.23 μmol/(min·mg), and 1 670 s⁻¹, respectively. The immobilized enzyme was used for (S)-4-fluorophenylglycine synthesis and the optimal reaction conditions were 300 mmol/L of N-phenylacetyl-4-fluorophenylglycine, 10 g/L of immobilized enzyme loading, and reacting for 180 min at pH 9.0 and 40 °C. A conversion rate of 49.9% was achieved under the optimal conditions, and the conversion rate can be increased to 99.9% under the conditions of enantiomeric excess. The immobilized enzyme can be repeatedly used, 95.8% of its original activity can be retained after 20 cycles.


Subject(s)
Amidohydrolases , Enzyme Stability , Enzymes, Immobilized/metabolism , Glycine/analogs & derivatives , Hydrogen-Ion Concentration , Metal-Organic Frameworks , Temperature
4.
Chinese Journal of Biotechnology ; (12): 4303-4313, 2021.
Article in Chinese | WPRIM | ID: wpr-921507

ABSTRACT

D-allulose-3-epimerase (DPEase) is the key enzyme for isomerization of D-fructose to D-allulose. In order to improve its thermal stability, short amphiphilic peptides (SAP) were fused to the N-terminal of DPEase. SDS-PAGE analysis showed that the heterologously expressed DPEase folded correctly in Bacillus subtilis, and the protein size was 33 kDa. After incubation at 40 °C for 48 h, the residual enzyme activity of SAP1-DSDPEase was 58%. To make the recombinant B. subtilis strain reusable, cells were immobilized with a composite carrier of sodium alginate (SA) and titanium dioxide (TiO2). The results showed that 2% SA, 2% CaCl2, 0.03% glutaraldehyde solution and a ratio of TiO2 to SA of 1:4 were optimal for immobilization. Under these conditions, up to 82% of the activity of immobilized cells could be retained. Compared with free cells, the optimal reaction temperature of immobilized cells remained unchanged at 80 °C but the thermal stability improved. After 10 consecutive cycles, the mechanical strength remained unchanged, while 58% of the enzyme activity could be retained, with a conversion rate of 28.8% achieved. This study demonstrated a simple approach for using SAPs to improve the thermal stability of recombinant enzymes. Moreover, addition of TiO2 into SA during immobilization was demonstrated to increase the mechanical strength and reduce cell leakage.


Subject(s)
Bacillus subtilis/metabolism , Carbohydrate Epimerases/genetics , Enzyme Stability , Enzymes, Immobilized/metabolism , Fructose , Hydrogen-Ion Concentration , Racemases and Epimerases , Temperature
5.
Electron. j. biotechnol ; 27: 84-90, May. 2017. graf, ilus, tab
Article in English | LILACS | ID: biblio-1010412

ABSTRACT

Background: Iron magnetic nanoparticles have attracted much attention. They have been used in enzyme immobilization because of their properties such as product is easily separated from the medium by magnetic separation. The present work was designed to immobilize horseradish peroxidase on Fe3O4 magnetic nanopraticles without modification. Results: In the present study, horseradish peroxidase (HRP) was immobilized on non-modified Fe3O4 magnetic nanoparticles. The immobilized HRP was characterized by FT-IR spectroscopy, scanning electron microscopy, and energy dispersive X-ray. In addition, it retained 55% of its initial activity after 10 reuses. The optimal pH shifted from 7.0 for soluble HRP to 7.5 for the immobilized HRP, and the optimal temperature shifted from 40°C to 50°C. The immobilized HRP is more thermostable than soluble HRP. Various substrates were oxidized by the immobilized HRP with higher efficiencies than by soluble HRP. Km values of the soluble and immobilized HRP were 31 and 45 mM for guaiacol and 5.0 and 7.0 mM for H2O2, respectively. The effect of metals on soluble and immobilized HRP was studied. Moreover, the immobilized HRP was more stable against high concentrations of urea, Triton X-100, and isopropanol. Conclusions: Physical immobilization of HRP on iron magnetic nanoparticles improved the stability toward the denaturation induced by pH, heat, metal ions, urea, detergent, and water-miscible organic solvent.


Subject(s)
Enzymes, Immobilized/chemistry , Ferrosoferric Oxide/chemistry , Horseradish Peroxidase/chemistry , Solubility , Spectrometry, X-Ray Emission , Temperature , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Enzymes, Immobilized/metabolism , Nanoparticles/chemistry , Horseradish Peroxidase/metabolism , Hydrogen-Ion Concentration
6.
Indian J Exp Biol ; 2014 Nov; 52(11):1045-1051
Article in English | IMSEAR | ID: sea-153785

ABSTRACT

The kinetics of immobilized enzymes can not be analyzed by means of the simple Michaelis-Menten concept, which generally fails to describe the immobilized state due to both its probable barriers, and because the active concentration of the enzyme approaches, or even exceeds this of its substrate(s). In such cases, the various experimental data are usually treated by complex rate equations comprising too many parameters acquiring different natures and meanings, depending on both the properties of the immobilization state and the experimental conditions; thus, more likely, only apparent values of the Michaelis-Menten kinetic parameters can be estimated experimentally. Likewise, immobilization is often a key method in optimizing the operational performance of enzymes, in both laboratory and industrial scale, and affects considerably the kinetics in non-aqueous and non-conventional media due to several issues as the structural changes of the enzyme molecule, the heterogeneity of the system, and the partial or total absence of water. In this work a theoretical approach is described on the formulation of simplified rate equations, reflecting also the actual mass balances of the reactants, in the case where esterification synthetic reactions are catalyzed by immobilized lipases, in either a non-aqueous organic solvent or in a non-solvent system.


Subject(s)
Biotransformation , Catalysis , Enzymes, Immobilized/metabolism , Kinetics , Mathematics , Solvents
7.
Rev. bras. enferm ; 67(5): 832-842, Sep-Oct/2014. tab
Article in Portuguese | LILACS, BDENF | ID: lil-731218

ABSTRACT

Este artigo apresenta uma revisão integrativa das publicações científicas da última década, que investigaram os hábitos de sono, a ingestão alimentar e o estado nutricional de profissionais de enfermagem. Foram analisados artigos publicados em periódicos nacionais e internacionais no período de 2002 a 2014, disponibilizados na base de dados PubMed/MEDLINE (USA National Library of Medicine), Lilacs / SciELO (Scientific Eletronic Library Online) e Google Acadêmico. Trinta e um artigos preencheram os critérios estabelecidos. Na análise destes estudos foi identificada elevada prevalência de sobrepeso e obesidade, além de uma modificação negativa nos hábitos alimentares, bem como prejuízos na dinâmica do sono dos profissionais da área de enfermagem.


This article presents an integrative review of national and international scientific publications that investigate the sleep habits, the feed intake and nutritional status of nursing professionals. It was analyzed articles published in national and international journals in the period 2002 to 2014 and made available in the database PubMed / MEDLINE (USA National Library of Medicine), Lilacs / SciELO (Scientific Eletronic Library Online) and Google Scholar. Thirty one articles met the criteria. In the analysis of these studies it has been found a high prevalence of overweight and obesity, a negative change in the eating habits, as well as losses in the sleep patterns of nursing professionals.


En este artículo se presenta una revisión integradora de las publicaciones científicas nacionales e internacionales que investigan los hábitos de sueño, el consumo de alimento y el estado nutricional de los profesionales de enfermería. Se analizaron los artículos publicados en revistas nacionales e internacionales en el período de 2002 a 2014, disponibles en la base de datos PubMed / MEDLINE (USA Biblioteca Nacional de Medicina), Lilacs / SciELO (Scientific Eletronic Library Online) y Google Scholar. Treinta y uno artículos cumplieron con los criterios de inclusión. En el análisis de estos estudios se encontró una alta prevalencia de sobrepeso y obesidad, un cambio negativo en los hábitos alimenticios, así como prejuicios en la dinámica del sueño de los profesionales de enfermería.


Subject(s)
Penicillanic Acid/analysis , Penicillin G/metabolism , Phenylacetates/analysis , Chromatography, High Pressure Liquid , Enzymes, Immobilized/metabolism , Hydrogen-Ion Concentration , Hydrolysis , Mass Spectrometry , Penicillanic Acid/analogs & derivatives , Penicillin Amidase/metabolism , Temperature
8.
Indian J Biochem Biophys ; 2013 Dec; 50(6): 570-756
Article in English | IMSEAR | ID: sea-154217

ABSTRACT

Esterification of lauric acid with n-butanol, catalyzed by immobilized Candida antarctica lipase (CAL) in aqueous-organic biphasic solvent system was studied. Effects of various reaction parameters on esterification were investigated, such as type and amount of solvent, amount of buffer, pH, temperature, speed of agitation, amount of enzyme, butanol and lauric acid. The most suitable reaction conditions for esterification were observed at 50ºC and pH 7.0 using 5000 μmoles of lauric acid, 7000 μmoles of butanol, 0.25 ml phosphate buffer, 1 ml of isooctane as the solvent and 50 mg of immobilized enzyme in the reaction medium at agitation speed of 150 rpm. Maximum esterification of 96.36% was acheived in 600 min of reaction time at n-butanol to lauric acid molar ratio of 1: 0.7. Kinetic study for the esterification of lauric acid with n-butanol using immobilized CAL was carried out and the kinetic constants were estimated by using non-linear regression method. The estimated value of Michaelis kinetic constants for butanol (KmBt) and acid (KmAc) were 451.56 (M) and 4.7 × 10-7(M), respectively and the value of dissociation constant (KBt) of the butanol-lipase complex was 9.41 × 107(M). The estimated constants agreed fairly well with literature data.


Subject(s)
Buffers , Butanols/chemistry , Enzymes, Immobilized/metabolism , Esterification , Fungal Proteins/metabolism , Hydrogen-Ion Concentration , Kinetics , Lauric Acids/chemistry , Lipase/metabolism , Solvents/chemistry , Temperature , Water/chemistry
9.
Electron. j. biotechnol ; 16(6): 6-6, Nov. 2013. ilus, tab
Article in English | LILACS | ID: lil-696547

ABSTRACT

Background: β-Glucosidase is known as an effective catalyst for the hydrolysis of various glycosides and immobilization is one of the most efficient strategies to improve its activity recovery and properties. Results: Crosslinking-adsorption-crosslinking method was employed to immobilize β-glucosidase into chitosan beads and response surface methodology (RSM) was used to optimize the immobilized conditions of the maximum activity recovery. Enzyme concentration and adsorption time were found to be significant influence factors, and the maximum activity recovery (50.75%) obtained from response surface methodology was in excellent agreement with experimental value (50.81%). Furthermore, various characteristics of immobilized β-glucosidase were evaluated. Compared to the free β-glucosidase, the immobilized enzyme exhibited broader pH and temperature ranges, enhanced thermal stability, better storage stability and reusability and higher accessibility of the substrate to the immobilized β-glucosidase. Conclusion: Response surface methodology (RSM) was proved to be much economical for optimum immobilization of β-glucosidase into chitosan beads.


Subject(s)
beta-Glucosidase/metabolism , Chitosan/metabolism , Enzymes, Immobilized/metabolism , Temperature , Enzyme Stability , Kinetics , Adsorption , Cross-Linking Reagents , Hydrogen-Ion Concentration , Microspheres
10.
Electron. j. biotechnol ; 16(6): 10-10, Nov. 2013. ilus, tab
Article in English | LILACS | ID: lil-696551

ABSTRACT

Background: Cyclodextrin glycosyltransferase (CGTase) from Amphibacillus sp. NPST-10 was successfully covalently immobilized on aminopropyl-functionalized silica coated superparamagnetic nanoparticles; and the properties of immobilized enzyme were investigated. The synthesis process included preparing of core magnetic magnetite (Fe3O4) nanoparticles using solvothermal synthesis; followed by coating of Fe3O4 nanoparticles with dense amino-functionalized silica (NH2-SiO2) layer using in situ functionalization method. The structure of synthesized Fe3O4@NH2-SiO2 nanoparticles was characterized using TEM, XRD, and FT-IR analysis. Fe3O4@NH2-SiO2 nanoparticles were further activated by gluteraaldehyde as bifunctional cross linker, and the activated nanoparticles were used for CGTase immobilization by covalent attachment. Results: Magnetite nanoparticles was successfully synthesized and coated with and amino functionalized silica layer (Fe3O4/NH2-SiO2), with particle size of 50-70 nm. The silica coated magnetite nanoparticles showed with saturation magnetization of 65 emug-1, and can be quickly recovered from the bulk solution using an external magnet within 10 sec. The activated support was effective for CGTase immobilization, which was confirmed by comparison of FT-IR spectra of free and immobilized enzyme. The applied approach for support preparation, activation, and optimization of immobilization conditions, led to high yields of CGTase immobilization (92.3%), activity recovery (73%), and loading efficiency (95.2%); which is one of the highest so far reported for CGTase. Immobilized enzyme showed shift in the optimal temperature from 50 to 55ºC, and significant enhancement in the thermal stability compared with free enzyme. The optimum pH for enzyme activity was pH 8 and pH 7.5 for free and immobilized CGTase, respectively, with slight improvement of pH stability of immobilized enzyme. Furthermore, kinetic studies revealed that immobilized CGTase had higher affinity toward substrate; with k m values of 1.18 ± 0.05 mg/ml and 1.75 ± 0.07 mg/ml for immobilized and free CGTase, respectively. Immobilized CGTase retained 87% and 67 of its initial activity after 5 and 10 repeated batches reaction, indicating that immobilized CGTase on Fe3O4/NH2-SiO2 had good durability and magnetic recovery. Conclusion: The improvement in kinetic and stability parameters of immobilized CGTase makes the proposed method a suitable candidate for industrial applications of CGTase. To best of our knowledge, this is the first report about CGTase immobilization on silica coated magnetite nanoparticles.


Subject(s)
Enzymes, Immobilized/metabolism , Enzymes, Immobilized/chemistry , Magnetite Nanoparticles/chemistry , Glucosyltransferases/metabolism , Glucosyltransferases/chemistry , Spectrophotometry, Infrared , Temperature , Bacillaceae/enzymology , Kinetics , Silicon Dioxide , Cyclodextrins , Culture Techniques , Glucosyltransferases/isolation & purification , Glucosyltransferases/biosynthesis , Hydrogen-Ion Concentration
11.
Article in English | IMSEAR | ID: sea-144791

ABSTRACT

Background & objectives: The use of epoxy resin membrane as a support for immobilization of enzyme has resulted into improved sensitivity and stability of biosensors for uric acid, ascorbic acid and polyphenols. The present work was aimed to prepare an improved amperometric biosensor for determination of serum cholesterol required in the diagnostics and management of certain pathological conditions. Methods: Epoxy resin membrane with immobilized cholesterol oxidase was mounted on the cleaned platinum (Pt) electrode with a parafilm to construct a working electrode. This working electrode along with Ag/AgCl as reference and Ag wire as an auxiliary electrode were connected through a three terminal electrometer to construct a cholesterol biosensor. Results: The sensor showed optimum response within 25 sec at pH 7.0 and 45°C. The linear working range of biosensor was 1.0 to 8.0 mM cholesterol. Km and Imax for cholesterol were 5.0 mM and 9.09 μA, respectively. The biosensor measured serum cholesterol. The minimum detection limit of the sensor was 1.0 mM. The mean analytical recoveries of added cholesterol in serum (2.84 and 4.13 mM) were 91.4±2.8 and 92.3±3.1 per cent (n=6), respectively. Within and between assay coefficient of variation (CV) were <2 and <4 per cent, respectively. Biosensor had a storage life of 6 months at 4°C. Interpretation & conclusions: The use of epoxy resin membrane as a support for immobilization of cholesterol oxidase has resulted into an improved amperometric cholesterol biosensor. The present biosensor had an advantage over the existing biosensors as it worked at comparatively lower potential.


Subject(s)
Ascorbic Acid/blood , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Biosensing Techniques/statistics & numerical data , Cholesterol/chemistry , Cholesterol Oxidase/chemistry , Electrodes , Enzymes, Immobilized/metabolism , Epoxy Resins/metabolism , Temperature
12.
Electron. j. biotechnol ; 13(6): 12-13, Nov. 2010. ilus, tab
Article in English | LILACS | ID: lil-591916

ABSTRACT

Lipase from Candida rugosa was covalently immobilized on Sepabeads EC-EP for application for amyl caprylate synthesis in an organic solvent system. Several solvents were tested in terms of biocatalyst stability and the best result was obtained with isooctane. The lipase-catalyzed esterification in the selected system was performed in batch and fluidized bed reactor systems. The influence of several important reaction parameters including temperature, initial water content, enzyme loading, acid/alcohol molar ratio, and time of addition of molecular sieves is carefully analyzed by means of an experimental design. Almost complete conversion (> 99 percent) of the substrate to ester could be performed in a batch reactor system, using lipase loading as low as 37 mg g-1 dry support and in a relatively short time (24 hrs) at 37°C, when high initial substrate molar ratio of 2.2 is used. Kinetics in a fluidized bed reactor system seems to still have a slightly better profile than in the batch system (90.2 percent yields after 14 hrs). The fluidized bed reactor operated for up 70 hrs almost with no loss in productivity, implying that the proposed process and the immobilized system could provide a promising approach for the amyl caprylate synthesis at the industrial scale.


Subject(s)
Candida/enzymology , Caprylates/chemical synthesis , Enzymes, Immobilized/metabolism , Lipase/metabolism , Bioreactors , Enzyme Stability , Esterification , Solvents
13.
Electron. j. biotechnol ; 10(4): 508-513, oct. 2007. ilus, tab
Article in English | LILACS | ID: lil-504124

ABSTRACT

The esterification of phenylpropanoid and hydrophenylpropanoid acids, catalyzed by candida antarctica lipase B (CAL-B), with several alcohols has demonstrated that the substitution pattern on the aromatic ring has a very significant influence on the reactivity of the carboxyl group due, mainly, to electronic effects, when compared to the unsaturated acids with the hydrogenated acids. It is also clear that in the saturated acids there still remain some unclear effects related to the aromatic substituents.


Subject(s)
Esterification , Phenylpropionates/metabolism , Lipase/metabolism , Catalysis , Chromatography, High Pressure Liquid , Candida/enzymology , Enzymes, Immobilized/metabolism , Enzymes, Immobilized/chemistry , Phenylpropionates/chemistry , Lipase/chemistry , Solvents
14.
RBCF, Rev. bras. ciênc. farm. (Impr.) ; 42(2): 245-249, abr.-jun. 2006. tab
Article in Portuguese | LILACS | ID: lil-454546

ABSTRACT

This communication describes a method for adsorbing the invertase (EC.3.2.1.26) on DOWEX'registred mark' anion exchange resin. Among the types of DOWEX'registred mark' resins studied (1x8:50-400; 1x4:50-400 and 1x2:100-400), 1X4-200 was the most suitable, because it adsorbed the invertase molecules completely and the complex 1X4-200/invertase retained 100% of the catalytic activity. Moreover, no leakage of enzyme from the support was noted at the end of the sucrose hydrolysis


O presente trabalho descreve um método de adsorção da invertase (EC. 3.2.1.26) na resina de troca aniônica do tipo Dowex®. Entre os tipos de resinas Dowex® estudados (1x8:50-400; 1x4:50-400 e 1x2:100-400), 1x4-200 foi a mais apropriada devido à completa adsorção das moléculas de invertase e a sua retenção de atividade catalítica de 100% do complexo 1x4-200/invertase. Salienta-se ainda a ausência do desprendimento da enzima do suporte após o término da hidrólise da sacarose


Subject(s)
Enzymes, Immobilized/metabolism , Adsorption , Hydrolysis
15.
Indian J Biochem Biophys ; 2005 Dec; 42(6): 391-4
Article in English | IMSEAR | ID: sea-26751

ABSTRACT

Glucose oxidase (GOD) from Aspergillus niger and horseradish peroxidase (POD) were co-immobilized onto arylamine glass beads affixed on a plastic strip with a conjugation yield of 28.2 mg/g and 43% retention of their initial specific activity. The coimmobilized enzymes showed maximum activity at pH 7.5 when incubated at 37 degrees C for 15 min. A simple, specific and sensitive method for discrete analysis of the serum glucose was developed employing this strip. The minimum detection limit of the method was 5 mg/dl. Within and between assay coefficient of variations for the serum were <5.6% and <10.6% (n = 6) respondely. A good correlation (r = 0.943) was found between the glucose values obtained by the enzyme colorimetric method employing free GOD and POD and the present method. The strip lost 50% of its initial activity after its 150 regular uses for a period of one month, when stored in reaction buffer at 4 degrees C. The method is cost-effective than the enzymic colorimetric method, as the enzyme strip is reusable.


Subject(s)
Adult , Amines , Aspergillus niger/enzymology , Blood Glucose/metabolism , Diabetes Mellitus/blood , Enzymes, Immobilized/metabolism , Female , Glass , Glucose Oxidase/metabolism , Horseradish Peroxidase/metabolism , Humans , Male , Microspheres , Plastics
16.
Electron. j. biotechnol ; 8(3)Dec. 2005. graf
Article in English | LILACS | ID: lil-448795

ABSTRACT

High performance enzymatic synthesis of oleyl oleate, a liquid wax ester was carried out by lipase-catalysed esterification of oleic acid and oleyl alcohol. Various reaction parameters were optimised to obtain high yield of oleyl oleate. The optimum condition to produce oleyl oleate was reaction time; 5 min, organic solvents of log P is greater than or equal to 3.5, temperature; 40-50 ºC, amount of enzyme; 0.2-0.4 g and molar ratio of oleyl alcohol to oleic acid; 2:1. The operational stability of enzyme was maintained at >90 percent yield up to 9 cycles. Analysis of the yield of the product showed that at optimum conditions, >95 percent liquid wax esters were produced.


Subject(s)
Oleic Acids/biosynthesis , Candida/enzymology , Lipase/metabolism , Oleic Acids/chemistry , Esterification , Enzymes, Immobilized/metabolism , Esters/metabolism , Lipase/chemistry , Solvents , Substrate Specificity , Temperature , Time Factors
17.
Electron. j. biotechnol ; 8(1): 54-62, Apr. 2005. ilus, tab, graf
Article in English | LILACS | ID: lil-448782

ABSTRACT

The enzyme known as invertase (E.C. 3.2.1.26 - beta-D-fructofuranosidase) catalyzes the sucrose hydrolysis producing an equimolar mixture of glucose and fructose named inverted sugar. The fungus Cladosporium cladosporioides has invertase as its constituent. Hence, its use as a natural immobilized support for the invertase produces interesting results for the enzyme. The present work has the objective of determining the optimum operational conditions of auto-immobilized invertase, as well as its kinetic parameters (K M and Vmax). A complete 2³ factorial planning was done for the evaluation of such parameters. Temperature, pH and agitation level were the studied variables. The hydrolysis percentage was the monitored result. Batch tests in optimum conditions were done to determine the kinetic parameters. Temperature of 70ºC, pH 6 and agitation of 170 rpm were the established conditions for the hydrolysis process. The auto-immobilized invertase presented a K M of 447 mM and Vmax of 2,805 mmol/min.


Subject(s)
Cladosporium/enzymology , Enzymes, Immobilized/metabolism , beta-Fructofuranosidase/metabolism , Catalysis , Culture Media , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Sucrose/metabolism , Temperature
18.
Hindustan Antibiot Bull ; 2005-2006; 47-48(): 41-4
Article in English | IMSEAR | ID: sea-2375

ABSTRACT

The parameters for complete hydrolysis of L-phenyl acetyl phenylglycine (L-PAPG) using immobilized penicillin G acylase (IMEPGA) were investigated. IMEPGA exhibited maximum activity at pH 8.5 and 50 degrees C. The apparent Km value observed was 10 mM. Quantitative hydrolysis (>97%) of the L-PAPG was achieved within 45 min, at pH 7.8 and 37 degrees C, when 0.5% (w/v) of DL-PAPG was used and the concentration of IMEPGA was 133 IU/gm of DL-PAPG. The IMEPGA was used for 50 cycles.


Subject(s)
Enzymes, Immobilized/metabolism , Glycine/analogs & derivatives , Hydrogen-Ion Concentration , Penicillin Amidase/isolation & purification , Polymers/chemistry , Temperature
19.
Indian J Exp Biol ; 2004 Feb; 42(2): 202-7
Article in English | IMSEAR | ID: sea-56267

ABSTRACT

Extracellular Corynebacterium lipase was produced using a 2.5 L Chemap fermentor using 1300 ml fermentation medium at temperature 33 degrees C, agitator speed 50 rpm, aeration rate 1 VVM having KLa 16.21 hr(-1). Crude lipase was purified by salting out method followed by dialysis and immobilized using calcium alginate gel matrix followed by glutaraldehyde cross linking Purification process increased specific activity of enzyme from 2.76 to 114.7 IU/mg. Activity of immobilized enzyme was 107.31 IU/mg. Optimum temperature for purified and immobilized enzyme activity were 65 degrees and 50 degrees C respectively. Optimum pH was 8.0 in both the cases, Km and Vmax value for purified lipase were 111.1 micromol/min and 14.7% respectively. Ca2+ (5 mM) was found to be stimulator for enzyme activity. Immobilized lipase retained 68.18% of the original activity when stored for 40 days.


Subject(s)
Alginates/chemistry , Corynebacterium/enzymology , Cross-Linking Reagents , Dialysis , Enzymes, Immobilized/metabolism , Fermentation , Glucuronic Acid/chemistry , Glutaral/metabolism , Hexuronic Acids/chemistry , Hydrogen-Ion Concentration , Industrial Microbiology , Kinetics , Lipase/isolation & purification , Temperature
20.
J Biosci ; 2001 Sep; 26(3): 325-32
Article in English | IMSEAR | ID: sea-110775

ABSTRACT

We have earlier reported that overexpression of the gene encoding human hyaluronan-binding protein (HABP1) is functionally active, as it binds specifically with hyaluronan (HA). In this communication, we confirm the collapse of the filamentous and branched structure of HA by interaction with increasing concentrations of recombinant-HABP1 (rHABP1). HA is the reported ligand of rHABP1. Here, we show the affinity of rHABP1 towards D-mannosylated albumin (DMA) by overlay assay and purification using a DMA affinity column. Our data suggests that DMA is another ligand for HABP1. Furthermore, we have observed that DMA inhibits the binding of HA in a concentration-dependent manner, suggesting its multiligand affinity amongst carbohydrates. rHABP1 shows differential affinity towards HA and DMA which depends on pH and ionic strength. These data suggest that affinity of rHABP1 towards different ligands is regulated by the microenvironment.


Subject(s)
Animals , Hyaluronan Receptors/metabolism , Enzymes, Immobilized/metabolism , Fibroblasts/chemistry , Humans , Hyaluronic Acid/chemistry , Ligands , Mannose/chemistry , Recombinant Proteins/metabolism , Sepharose/chemistry , Serum Albumin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL